DZero Status 2003: Detector, Operations, and Physics

Jerry Blazey

On behalf of the DØ Collaboration for the International Finance Committee

September 19, 2003

Detector Statistics

- Silicon Tracker
 - Active Channels:
 - Ladders 86%
 - F Wedges 88%
 - H Wedges 80%
 - Cluster Efficiency > 97%
- Central Fiber Tracker
 - Active Channels: 99% of 80k
 - Hit efficiency > 98%
- Preshower
 - Active Central Channels: 99% of 8k
 - Active Forward Channels 99% of 15k
 - First calibrations complete
- Calorimeter
 - Active Channels: 99.9% of 50K
 - Linear/Stable
 - Addressing Noise Issues
- Muon
 - Active Scintillator Channels: 99.9%
 - Active Tracking Channels 99.5%
- FPD
 - Installing final electronics and PMT
 - Data w/ Standalone DAQ

Efficiently tracking

The detector is fully instrumented and efficient

SMT Performance

Tagged event: e+jets channel

Primary vertex:

$$N_{track} = 17$$

z = -4.6 cm

Event is tagged by both algorithms (run 169923 event 16396718

$$N_{jets} = 4$$

 $p_{T}(e) = 27 \text{ GeV}$
 $p_{T}(jet) = 51, 36, 30, 53 \text{ GeV}$
Missing $E_{T} = 58 \text{ GeV}$
 $H_{T} = 207 \text{ GeV}$
Aplanarity = 0.11

Tracking Performance

- Runs comfortably to 4E31 cm⁻²s⁻¹ and will keep pace with luminosity growth as tracking triggers completed, CPUs added.
- L1
 - Operating with Cal, Muon, <u>CTT/CPS</u>
 - >100 independent trigger bits
- L2
 - Operating with CAL, Muon, <u>CTT PS</u>
 - Processor upgrade just completed
 - STT integration will be complete soon
 - >100 bits
- L3
 - Extensive suite of filters available
 - >250
- DAQ
 - Working to reduce Front End Busies.

Recent Tevatron/DZero Performance

Reconstruction Strategy

- Primary processing done on Fermilab Farms.
 - Sufficient capacity to keep up with data stream
 - About 10M events/wk
 - All pre-shutdown data completed this week
- Reconstruction performed with two versions
 - P13 prior to June 24th, 2003
 - P14 thereafter has superior tracking
- Will cycle through all data prior to June 24th with P13
 - Using onsite farms
 - Balance with offsite farms (Michigan, Lyon, Karlsruhe...)

Reconstruction Time

- CPU time is measured in 10's GHz sec / event → importance for offsite processing
- Grows with instantaneous luminosity

Current version ~ same as previous version (albelt with higher tracking efficiency)

• Speed improvements:

~30% C++ improvements

- ~20% Algorithm optimization ₹

Physics Presented @ LP2003

masses, or scale limits

$$- M(B^{**}_{d}) = 5.71 \pm 0.016 \text{ GeV}$$

$$- m(\chi_0^1) > 80 \text{ GeV}$$

$$- m_{1/2} > 150 \text{ GeV}$$

-
$$M_s(GRW) > 1.28 \text{ TeV } (ee/\gamma\gamma)$$

-
$$M_s$$
(GRW) > 0.88 TeV (μμ)

$$- M_{LO}(\mu\mu) > 184 \text{ GeV}$$

-
$$M_{LO}(e_V) > 159 \text{ GeV}$$

$$- M_{LO}(ee) > 231 \text{ GeV}$$

$$- M_{7'}(ee) > 719 \text{ GeV}$$

$$M_{7}(\mu\mu) > 620 \text{ GeV}$$

$$- M(H^{\pm\pm}) > 115 \text{ GeV}$$

BR and R

-
$$BR(B_s -> \mu\mu) < 1.6 \times 10^{-6}$$

$$R_{W/z} = 10.34 \pm 0.35 \pm 0.48$$

lifetimes

$$\tau$$
(incl. B) = 1.562 \pm 0.013 \pm 0.045 ps

$$\tau(B^+) = 1.65 \pm 0.083^{+0.096}_{-0.1233} ps$$

$$\tau(B_d) = 1.52^{+0.19}_{-0.17} ps$$

$$\tau(B_s) = 1.19^{+0.19}_{-0.14} ps$$

$$\tau_{\wedge b} = 1.05^{+0.21}_{-0.18} \pm 0.12 \text{ ps}$$

$$- \tau (B->Dh) = 1.46 \pm 0.08 \text{ ps}$$

cross sections, or limits

$$-\sigma(tt) = 8.1^{+2.2}_{-2.0}^{+1.6}_{-1.4} \pm 0.8 \text{ pb}$$

$$-\sigma(\mathbf{Z}\mu\mu) = 261.8 \pm 5.0 \pm 8.9 \pm 26.2 \text{ pb}$$

-
$$\sigma$$
(**Z**ττ, π -type) = **235** ± **137** pb

-
$$\sigma(Z\tau\tau, \rho$$
-type) = 222 ± 71 pb

$$- \sigma(W+bb) < 33.4 pb$$

$$-$$
 σ*BR(H->WW-> $ee/e\mu$) < 0.45 to 2.8 pb

$$-$$
 σ*BR(H->WW->μμ) < 0.2 to 0.7pb

b-Physics: Resonances

$$\chi_c \to J/\psi \gamma$$

- Theoretical production not understood
- can resolve two mass peaks
 - χ_{c1} and χ_{c2}
 - given spins, don't expect equal production
- $N_{\chi_{c1}} = 77 \pm 12 \text{ evts}; N_{\chi_{c2}} = 33 \pm 9 \text{ evts}$

$$B_d^{**} \rightarrow B^+ \pi$$

- Fully reconstructed decays with 114 pb-1
- First Observation at the Tevatron
 - 5.71 +/- 0.016 GeV
 - 5.698 +/0.008 GeV (PDG)

DØ Run II Preliminary

b-Physics: Indirect searches for new particles

- Measure the rate of the rare decay $B_s \rightarrow \mu^+\mu^-$
- In the Standard Model, cancellations lead to a very small branching ratio
 - SM BR= 3.7×10^{-9}
- New particles (e.g. SUSY)
 contribute additional
 Feynman diagrams,
 increase BR

- In 100pb⁻¹ of data, after all cuts, in B_s mass region
 - Observe 3 events
 - Expect 3.4 ± 0.8 background
 - BR (B_s $\rightarrow \mu^{+}\mu^{-}$) < 1.6 \times 10⁻⁶ (90% CL)
 - 2.0 \times 10⁻⁶ (PDG)

b-Physics: Lifetime Measurements

Inclusive lifetime

- 300k J/ ψ 's from 114 pb⁻¹
- 1.562 ± 0.013 (stat.) ± 0.045 (sys.) ps
- 1.564 \pm 0.014 (PDG)

$$B \rightarrow J/\psi + X$$

- mass: 5.272 ± 0.005 GeV
- 1.65 ± 0.08 (stat.) ± 0.012 (sys.) ps
- 1.671 \pm 0.018 ps (PDG)

Electroweak: W and Z Cross Sections

- Z->μμ cross section
- 6126 events in 117 pb⁻¹

 σ^* Br = 261.8 ± 5.0 (stat) ± 8.9 (sys) ± 26.2 (lum) pb

Top Physics: Production Cross Section

We measure

$$\sigma = 8.1^{+2.2}_{-2.0} (stat)^{+1.6}_{-1.4} (syst) \pm 0.8 (lumi) pb$$

Is it consistent across all the various decay modes of the top quark?

Top mass

- Improved techniques
 - e.g. new DØ Run I mass measurement extracts a likelihood curve for each event
 - equivalent to a factor 2.4 increase in statistics:
 - $m_{top} = 180.1 \pm 5.4 \text{ GeV}$

cf 174.3 \pm 5.1 GeV (all previous measurements combined)

- We can look forward to improved precision on m_t in the near future
 - Expect ~ 500 b-tagged lepton+jets events per experiment per fb⁻¹
 - cf. World total at end of Run I ~ 50

Higgs Searches with 100-120 pb⁻¹

- W(e_V)+bb cross section
 - Background for Higgs search
 - 92 evts w/ IP tag
 - 3 evts w/ double IP tag
 - 5.5 \pm 1.6 evts background σ (W+bb) < 33.4 pb @ 95% c.l.

ET scale: 38 GeV

H → WW final state

- *ee*: 0 obs., 1.1 ± 0.8 background
- $e\mu$: 1 obs., 0.9 ± 0.5 background σ*BR < 0.45 pb to 2.8 pb $\mu\mu$: 1 obs., 0.9 ± 0.2 background σ*BR < 0.2 pb to 0.7 pb

New Phenomena: Searching for squarks and gluinos

Chargino/neutralino production

- "Golden" signature
 - Three leptons
 - very low standard model backgrounds
- Increasingly important as squark/gluino production reaches its kinematic limits (masses ~ 400-500 GeV)
- Reach on χ^{\pm} mass \sim 180 GeV (tan β = 2, μ < 0) \sim 150 GeV (large tan β)

We have entered unexplored territory in terms of sensitivity to new physics

Run II Trilepton candidate event

Leptoquark Searches

- $\rightarrow \mu^+ q \mu^- q'$ 90 pb⁻¹
 - backgrounds DY, ttbar, WW
 - $M_{LO}(\beta=1) > 184 \text{ GeV}$

121 pb⁻¹

- backgrounds: W+2j, γ +2j, top
- 3 events obs, 4.24 ± 1.0 expected
- assume BR 0.5, $M_{LO} > 159$ GeV
- $\rightarrow e^+ q e^- q'$ 135 pb⁻¹
 - backgrounds DY, ttbar, QCD multijet with elec. fakes
 - cross section < 0.086 pb
 - $M_{LQ}(\beta=1) > 231 \text{ GeV}$
 - Combined with Run1, get 253 GeV which is the most stringent limit to date

Searching for Extra Dimensions

• Signal would be an excess of ee, $\mu\mu$, $\gamma\gamma$ events at large mass and large angle, due to virtual graviton exchange

High-mass electron pair event

DØ limits from $pp \rightarrow ee$, $\mu\mu$, $\gamma\gamma$ (Summer 2003)

 $M_s(GRW) > 1.28 \text{ TeV} (128 \text{ pb}^{-1}, 95\% \text{ CL})$

> 1.37 TeV (Run I + Run II combined)

most stringent limit to date on large extra dimensions

Shutdown: Tracking

- Luminosity system
 - Spare cable installations
- Silicon
 - Repairs of failed electronics
 - Noise studies
 - Installation of coolant lines resistivity monitors
 - Replacement of TLDs
- Fiber tracker and preshowers
 - Maintenance/installation of upgraded LVPSs
 - Modifications of AFE boards
 to remove un-used SVX inputs
 from the readout to Reduce data size
 and front-end busy for the D0 detector
 - Maintenance of the VLPC He cooling system
- Forward proton detector
 - Maintenance and installation of electronics for full system operation

Shutdown: Calorimeter & Muon

Calorimeter

- Replacement of all large cooling fans for preamplifiers cooling
- Modifications and tests of all Rack Monitor Interfaces
- Study and hopefully fix noise (currently performing step by step power up of experiment)

Muon

- Access to A layer forward muon tracker: replacement of preamplifiers, gas leaks, gas monitors
- Installation of extra trigger counters
- Installation of ~200 remote power cycle relays for front-end electronics and all relevant cabling
- General detector maintenance
 - Air handlers, hydraulic systems, vacuum jackets, cooling water systems,
 ODH heads, etc.

Upgrade

- In light of recent decision to cancel the SMT upgrade we are re-optimizing our efforts, a Layer-0 is under consideration
- Trigger upgrade remains largely intact, on budget and on time
 - Calorimeter clustering & digital filtering
 - Enhance track trigger to respond to increased occupancies
 - Calorimeter cluster match with track
 - Incremental Upgrades to Level 2, Level 3 Triggers and online system

			7
Trigger	Example Physics	L1 Rate (kHz)	L1 Rate (kHz)
	Channels	(no upgrade)	(with upgrade)
EM	$W \rightarrow e v$	1.3	0.7
(1 EM TT > 10 GeV)	WH → e vjj		
Di-EM	$Z \rightarrow ee$	0.5	0.1
(1 EM TT > 7 GeV, 2 EM TT > 5 GeV)	ZH → eejj		
Muon	$W \rightarrow \mu \nu$	6	1.1
$(muon p_T > 11 GeV + CFT Track)$	$WH \rightarrow \mu \nu jj$		
Di-Muons	$Z \rightarrow \mu\mu, J/\Psi \rightarrow \mu\mu$	0.4	< 0.1
(2 muons $p_T > 3 \text{ GeV} + \text{CFT Tracks}$)	ΖН→ μμјј		
Electron + Jets (1 EM TT > 7 GeV, 2 Had TT > 5 GeV)	$WH \rightarrow e v + jets$	0.8	0.2
	$tt \rightarrow e v + jets$		
Muon + Jet	$WH \rightarrow \mu \nu + jets$	< 0.1	< 0.1
(muon $p_T > 3 \text{ GeV}$, 1 Had TT $> 5 \text{ GeV}$)	$tt \rightarrow \mu v + jets$		
Jet+MET	$ZH \rightarrow v\overline{v}b\overline{b}$	2.1	0.8
$(2 \text{ TT} > 5 \text{ GeV}, \text{ Missing } E_T > 10 \text{ GeV})$	$ZH \rightarrow VVDD$		
Muon + EM		< 0.1	< 0.1
(muons $p_T > 3$ GeV+ CFT track +	H→WW, ZZ		
1 EM TT > 5 GeV)			
Single Isolated Track	$H \rightarrow \tau \tau, W \rightarrow \mu \nu$	17	1.0
(1 Isolated CFT track, $p_T > 10 \text{ GeV}$)	$11 \rightarrow \iota \iota, vv \rightarrow \mu v$		
Di-Track		0.6	< 0.1
(1 isolated tracks $p_T > 10$ GeV, 2 tracks	$H \rightarrow \tau \tau$		
$p_T > 5$ GeV, 1 matched with EM energy)			

Total rate: ~30 kHz 3.9 kHz

Conclusions

- Detector operating well and efficiently
 - High Channel Count
 - Typically ~90% efficiency
 - Over 210pb⁻¹ of data to tape
- Physics program in full swing
- Moving to maintain/upgrade

Good Return on Investment!

